8 STEPS -
CONTROL OF HEATING SYSTEMS
Contents

Preface
1

Chapter 1 Definitions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>District heating</td>
<td>3</td>
</tr>
<tr>
<td>Pressure</td>
<td>5</td>
</tr>
<tr>
<td>Level pressure</td>
<td>5</td>
</tr>
<tr>
<td>Steam pressure</td>
<td>5</td>
</tr>
</tbody>
</table>

Chapter 2 District heating systems used in Western Europe

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>7</td>
</tr>
<tr>
<td>1. Environmental requirements</td>
<td>7</td>
</tr>
<tr>
<td>2. Fuel</td>
<td>8</td>
</tr>
<tr>
<td>3. Exhaust emission control</td>
<td>9</td>
</tr>
<tr>
<td>4. Water quality</td>
<td>10</td>
</tr>
<tr>
<td>5. Flow and return temperatures</td>
<td>12</td>
</tr>
<tr>
<td>6. Expansion systems</td>
<td>13</td>
</tr>
<tr>
<td>7. Open expansion system</td>
<td>14</td>
</tr>
<tr>
<td>8. Closed expansion system</td>
<td>14</td>
</tr>
<tr>
<td>Distribution</td>
<td>15</td>
</tr>
<tr>
<td>1. Pre-insulated pipes</td>
<td>15</td>
</tr>
<tr>
<td>2. Construction, material</td>
<td>15</td>
</tr>
<tr>
<td>3. Heat losses</td>
<td>16</td>
</tr>
<tr>
<td>4. Linear expansion due to variations in temperature</td>
<td>16</td>
</tr>
<tr>
<td>5. Design</td>
<td>16</td>
</tr>
<tr>
<td>6. Flow</td>
<td>17</td>
</tr>
<tr>
<td>7. Pumps</td>
<td>18</td>
</tr>
<tr>
<td>8. Pressure control</td>
<td>18</td>
</tr>
<tr>
<td>Consumption</td>
<td>19</td>
</tr>
<tr>
<td>1. Heat exchanger</td>
<td>19</td>
</tr>
<tr>
<td>2. Connection design</td>
<td>20</td>
</tr>
<tr>
<td>3. Electronic temperature controls</td>
<td>21</td>
</tr>
<tr>
<td>4. Self-acting controls</td>
<td>21</td>
</tr>
<tr>
<td>5. Control valves</td>
<td>22</td>
</tr>
<tr>
<td>6. Differential pressure control</td>
<td>23</td>
</tr>
</tbody>
</table>

Chapter 3 Secondary systems used in Europe

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>27</td>
</tr>
<tr>
<td>Comfort</td>
<td>28</td>
</tr>
<tr>
<td>Heat requirement</td>
<td>29</td>
</tr>
<tr>
<td>Transmission requirements</td>
<td>29</td>
</tr>
<tr>
<td>Ventilation</td>
<td>30</td>
</tr>
<tr>
<td>Wind influence</td>
<td>30</td>
</tr>
<tr>
<td>Incidental heat gain from heat sources other than the heating system</td>
<td>31</td>
</tr>
<tr>
<td>Domestic hot water</td>
<td>31</td>
</tr>
<tr>
<td>Production</td>
<td>32</td>
</tr>
<tr>
<td>1. Control</td>
<td>32</td>
</tr>
<tr>
<td>2. Control valves</td>
<td>33</td>
</tr>
<tr>
<td>3. Temperature controller</td>
<td>33</td>
</tr>
<tr>
<td>4. Periodic set back of the flow temperature</td>
<td>34</td>
</tr>
<tr>
<td>5. Expansion systems</td>
<td>34</td>
</tr>
<tr>
<td>6. Closed system</td>
<td>34</td>
</tr>
<tr>
<td>7. Open systems</td>
<td>34</td>
</tr>
<tr>
<td>8. High-rise buildings</td>
<td>35</td>
</tr>
<tr>
<td>Distribution</td>
<td>36</td>
</tr>
<tr>
<td>1. Definitions</td>
<td>36</td>
</tr>
<tr>
<td>2. Pipe material</td>
<td>37</td>
</tr>
<tr>
<td>3. Piping</td>
<td>37</td>
</tr>
<tr>
<td>4. Compensation for the linear expansion due to temperature variations</td>
<td>38</td>
</tr>
<tr>
<td>5. Insulation</td>
<td>38</td>
</tr>
<tr>
<td>6. Flow</td>
<td>38</td>
</tr>
<tr>
<td>7. Pumps</td>
<td>39</td>
</tr>
<tr>
<td>8. Pump control</td>
<td>39</td>
</tr>
<tr>
<td>Consumption</td>
<td>40</td>
</tr>
<tr>
<td>1. Radiator and convector systems</td>
<td>40</td>
</tr>
<tr>
<td>2. Pressure distribution</td>
<td>42</td>
</tr>
</tbody>
</table>
3. Differential pressure controls 43
4. Control of the room temperature 44
5. Correct flow temperature 44
6. Floor heating systems 45
7. Control 46
8. Ventilation 46

Chapter 4 Evaluation of systems and products 47
District heating 47
Central boiler plant 48
Fuel 49
Combustion 50
Exhaust emission control 51
Temperatures 52
Static pressure 52
Expansion system 53
Distribution - Consumption 54
1. Accumulator 54
2. Temperature 55
3. Static pressure 55
4. Pre-insulated pipes 55
5. Flow 56
 Control valves 56
 Differential pressure control 58
 Flow limitation 59
6. Heat exchangers 60
7. Pump 61
8. Metering 63
Heating systems 65
1. One-pipe systems 66
 Existing one-pipe systems 67
 Two or three-way valves 69
2. Two-pipe systems 70
 Vertical or horizontal systems 71
 Gravity 72
3. Thermostatic or manual valve 73
4. Weather compensation 75
 Setting of the right flow temperature 76
 Periodic set back of the flow temperature 77

Chapter 5 Instructions for designing district heating systems 89
Environment 90
1. Durability 90
2. Production 90
3. Fuel 91
4. Combustion 91
5. Flue gas purification 91
6. Handling of ashes 92
7. Handling of coal 92
8. Water quality 93
Local district heating system 94
1. Effect ranges 94
2. Existing boilers 94
3. New boilers 95
4. Accumulator 96
5. Expansion systems 97
6. Circulation pumps 98
 Dynamic pressure 98
 Flow 98
7. Pre-insulated pipes 99
 Material 99
 Linear expansion due to variations in temperature 99
 Sizing of pipes 100
8. Heat exchangers 100

Operating conditions 101
1. Temperature levels 101
2. Return temperatures 101
3. Temperature drop in the distribution network 102
4. Static pressure 102
5. Available differential pressure 103
6. Water quality 104
7. Pressure testing 105
8. Operating times 105

Local control and supervision 106
1. The control of boilers 106
2. Control of the accumulator 107
3. Control of the outgoing temperature in the district heating network 107
4. Flow limitation 108
5. Differential pressure control 109
6. Pressure control of pumps 110
7. Heat metering 111
8. Central control and supervision 112

Chapter 6 Instructions for designing heating systems 113

Comfort 114
1. Room temperature 114
2. Temperature on the surfaces of the room 114
3. Down draught 115
4. Ventilation 115
5. Wind influences 116
6. Distribution of the heat 116
7. Domestic hot water 116
8. Hot water circulation 117

Conditions 118
1. Heat requirement 118
2. Calculation of the transmission losses 118
3. Ventilation 119
4. Incidental heat gain 119
5. The wind influence on the heat requirements 120
6. Heat requirement per room 120
7. Control of the actual heat requirement 120
8. Domestic hot water 120

Heating systems 121
1. Heat exchangers 121
2. Expansion system 122
3. Circulation pump 122
4. Horizontal distribution pipe 123
5. Risers 124
6. High-rise buildings 125
7. Radiator circuit, two-pipes horizontal 126
8. Radiators – convecors 128

Operating conditions 130
1. Temperature levels 130
2. Return temperature 130
3. Temperature drops in the pipe system 131
4. Static pressure 131
5. Expansion vessels 131
6. Available differential pressure 131
7. Water quality 132
8. Heat losses in the sub-station 132

Control 133
1. Control and supervision 133
2. Control of flow and return temperature 134
3. Control of the room temperature 134
4. Pressure control of pumps 135
5. Control of the available differential pressure 136
6. Flow metering per apartment 136
7. Control of domestic hot water 137
8. Control of domestic water in an apartment 137

Chapter 7 How to select size of products and components 139
Thermostatic valves 139
Choice of valve size 139
Existing one-pipe systems 139
Two-pipe systems 139
Flow 139
Valve size 140
Pre-setting 141
Choice of control unit 141

Control valves 142
Primary systems 142
Available differential pressure 142
Valve size 143
Secondary systems 144
 Available differential pressure 144
 Two-way valve 144
 Valve sizes 145
Differential pressure controls 146
 Primary systems 146
 Available differential pressure 146
 Valve size 147
 Setting value 148
 Secondary systems 148
 Available differential pressure 148
 Valve size 148
 Differential pressure control of risers 150
 Setting value 151
Flow limitation 152
 Primary systems 152
 Secondary systems 153
Control equipment 155
 Radiator systems 155
 Hot water heating 156
Pipes and heat exchangers 157
 Pipes for heating 157
 Pipes for domestic water 158
 Heat exchangers 158
Heat meters 159
 The primary network 159
 The secondary network 159
Pressure control of pumps 160
 The primary network 160
 The secondary network 160

Chapter 8 Technical data, Formulas and charts 161
Preface.

Heating a home has always been and still is a basic human requirement. This requirement enables us to live and work in locations with low temperature. In the beginning the solutions were simple. An open fire on the floor of a tent or a simple hut, made it possible to survive in a hostile environment. As civilisation developed there was migration from the countryside to the towns and cities and into bigger and bigger houses, creating a requirement for more elaborate heating systems. This requirement stimulated technical development, but also created a problem, namely the use of a finite resource (fossil fuels) with the resulting pollutions from the burned fuels.

The purpose of a good heating system is to create the best environment possible. The construction of the building with a well designed heating system, associated with good automatic controls, minimises the heating requirements and emissions radically.
Definitions.

District heating

District heating is a system which provides a number of buildings with heat from a central boiler plant through pre-insulated pipes. (Pre-insulated pipes are in fact a modern kind of heat culvert or district heating duct, but since these systems nowadays are pre-manufactured, they will from here on be referred to as pre-insulated pipes.) The smallest systems cover 200-300 houses or a block.

The connection to the secondary heating system can be direct or indirect, i.e. with or without a heat exchanger. Domestic hot water is also produced with the help of district heating. As a result, the heating plants are also in operation during non-heating seasons.

There is a difference between heating plants, pure heat producers and combined heat and power plants. The main purpose of the last-named is to produce electricity through a steam turbine. The connected buildings are used to cool down the condensate to such a low temperature as possible in order to increase the capacity of the steam turbine.

The efficiency for coal-fired power plants is low, 30-40 %. By combining the power production with the heat delivery, the efficiency has increased right up to 90 %, which corresponds to the efficiency of well-kept district heating plants.

A district heating plant, (the primary circuit), can be divided into three parts:

- Production (central boiler plant)
- Distribution (pre-insulated pipes)
- Consumption (sub-station)
In the production plant, the water temperature is increased to the required level. Distribution implies heat transfer to the consumers with as small a loss as possible. Consumption implies heat transfer from the water of the primary side to the water of the secondary side, and a large temperature drop in the primary water. It may also imply directly connected systems, detached houses for instance, with a differential pressure control as protection against too high differential pressures.

District heating systems with a large production plant, an efficient distribution network and a sub-station with heat exchanger and automatic controls, can be made very effective in respect of consumption as well as pollution.

The choice of material and operating conditions such as static pressure, temperature and water quality are important factors concerning the operation of the system, its maintenance and its durability.

The heating system in a building, (the secondary circuit), can be divided into three parts:

- Production (heat transfer through the heat exchanger)
- Distribution (the main piping system of the building, including the circulation pump)
- Consumption (radiator, convector, or floor heating for the rooms)

In the production plant, the secondary water temperature is increased to the required level.

Distribution implies heat transfer to the consumers with the smallest losses possible and small temperature drop.

Consumption implies heat transfer from the water to the rooms and large temperature drop in the water.
Pressure

In district heating systems and heating systems, you make a distinction between static and dynamic pressure. In an open system, the static pressure is equal to the weight of the water column. The word static represents something stationary. The dynamic pressure appears when the water begins to circulate and a circulating resistance is formed. The word dynamic means that something is in motion.

The static pressure has two functions in a district heating system. It has to ensure that all parts of the system are filled with water (level pressure) and that the water does not begin to boil (steam pressure).

Level pressure

All the parts of a system are filled with water if the static pressure, calculated in meter water gauge, is equal to the level of the system, at its meter. 10m WG = 1 bar = 100 kPa, providing the circulation pump is not in operation. If the circulation pump is placed in the flow line, which is usually the case with the district heating systems of today, the pump will provide a higher total pressure (static + dynamic pressure) in the flow line, when in operation.

Correspondingly, the total pressure is lower in the return line, and lowest at the return connection to the pump. By placing the pump in the flow, you will have an additional guarantee that there is water in all parts of the system.

If the pump is placed in the return line, the case will be the opposite, and the static pressure must be increased by 60-70% of the pressure increase across the pump in order to get all parts filled with water.

Steampressure

The boiling point of the water is depending on the current pressure. A low pressure decreases the boiling point and a high pressure increases it. At sea level the water boils at 100°C in an open vessel, and already at 120°C, an over-pressure (the pressure shown on the pressure gauge) of approximately 1 bar, 100 kPa, is required to avoid boiling. An over-pressure of 2 bar, 200 kPa, corresponds to approximately 130°C.

In order to avoid boiling, the over-pressure required must be available in each unit of the system.